

M.2 2280 PCIe SSD

(Photo for reference only.)

Version 1.3 Oct. 25, 2021

SM2P32A8

256GB, 512GB, 1TB

Proprietary and Confidential

All information, materials and content available in this document are protected by copyrights and other intellectual property rights of ADATA Technology Co., Ltd., all rights are strictly reserved. Any portion of this document shall not be reproduced, copied, or translated to any other forms without permission from ADATA Technology Co., Ltd.

Revision History

Revision	Date	Description	Editor
1.0	Apr. 23, 2021	Initial release	Marx Yang
1.1	May. 11, 2021	Update for requirements	Marx Yang
		Update CMD and SMART tables; Update FW version; Add	
1.2	Jun. 8, 2021	Data Retention, Power Up, and PCle Power Management	Marx Yang
		Register Tables	
4.0		Update 3.4 Power consumnption, 3.8 FW version,	0: 1 1
1.3	Oct. 25, 2021	6.0 SSD Label	Cindy Lee

TABLE OF CONTENTS

1.0 General Description	
2.0 Mechanical Specifications	2
2.1 Physical Dimensions and Weights	2
2.2 Product Dimensions	2
3.0 Product Specifications	3
3.1 Interface and Configurations	3
3.2 Capacity	3
3.3 Performance	3
3.4 Electrical Specifications	4
3.5 Environmental Conditions	5
3.6 Reliability	5
3.7 Endurance	6
3.8 FW Version	6
3.9 Key Component List	6
3.10 Thermal Specifications	6
3.11 Power Up Specifications	6
3.12 PCIe Power Management Register	7
4.0 Support Command Sets	8
4.1 Identify Device Command	8
4.2 SMART/Health Information	14
4.3 NVMe Command Set	18
5.0 Pin Assignment and Descriptions	21
6.0 Product Line up	
7.0 Package Specification	23

Key Features

Capacity:

> 256GB, 512GB, 1TB

NAND Flash: 3D NAND

• Form Factor: M.2 2280 PCle

• Host Interface:

PCle Gen 3 (8Gb/s) x 4 Lane

Compliant with NVMe 1.3 register interface and command set

Compliant with PCle Express 3.1

• Flash Management:

- > LDPC ECC Engine
- Wear leveling
- Bad block Management
- Garbage collection
- > TRIM Command
- SLC Cache Technology

Security:

AES 256 supported

Data Integrity:

- Thermal throttling
- ➤ S.M.A.R.T. monitor

Performance:

Sequential Read: Up to 3400 MB/s

Sequential Write: Up to 2100 MB/s

Random 4K Read: Up to 100K IOPS

Random 4K Write: Up to 190K IOPS

Power Consumption:

➤ L0: 0.55w

> L1:0.04w

> L1.2: 0.0013w

> SR/SW: 1.61w/2.63w

> RR/RW: 1.59w/1.77w

Temperature:

Standard: 0°C ~ 70°C

➤ Non-operation: -40°C ~ 85°C

Reliability:

Shock: 1500G/0.5ms

➤ Vibration 20G Peak, 10~2000Hz

MTBF: 2,000,000 hours

Uncorrectable Bit Error Rate(UBER):
10⁻¹⁵

Endurance:

> TBW: Up to 960TB

1.0 General Description

To replace the SATA SSD, look no further than the SM2P32A8 PCIe Gen3x4 M.2 2280 SSD. Supporting NVMe 1.3, equipped with 3D NAND Flash, and coming with up to 1TB capacity, the SM2P32A8 is a great upgrade choice.

Featuring HMB (Host Memory Buffer) and SLC Caching, the SM2P32A8 accelerates read/write speeds up to 3400/2100MB/s and delivers random performance of up to 100K/190K IOPS. Whether booting, gaming or transferring large files, the SM2P32A8 accomplish them quickly and effectively.

The SM2P32A8 utilizes LDPC (Low-Density Parity-Check) error correcting code technology to detect and fix a wider range of data errors for more reliable data transfers and a longer product lifespan. Also, it is suitable for desktop and notebook PCs. As there's no need for cumbersome installation, you can immediately experience the high speed and smoothness of a PCIe SSD.

2.0 Mechanical Specifications

All product specifications not covered in this document (electrical performance, appearance, etc.) are in accordance with ADATA's defined norms and standards.

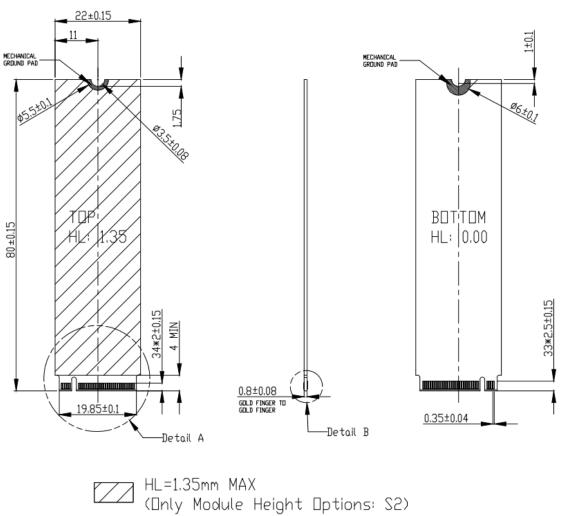

2.1 Physical Dimensions and Weights

Table 2-1 Dimensions and Weights

Capacity(GB)	Length(mm)	Width(mm)	Height(mm)	Weight(gram)
256GB	80.00±0.15	22.00±0.15	Max 2.15	Max 7
512GB	80.00±0.15	22.00±0.15	Max 2.15	Max 7
1TB	80.00±0.15	22.00±0.15	Max 2.15	Max 7

2.2 Product Dimensions

Figure 2-1 Product Dimensions

3.0 Product Specifications

3.1 Interface and Configurations

- Compliant with PCI Express M.2 Specification Revision 1.1.
- · Compliant with NVMe 1.3 register interface and command set.
- Compliant with PCIe Express 3.1

3.2 Capacity

Table 3-1 User Addressable Sectors

Model	SM2P32A8			
Unformatted Capacity	256GB 512GB 1TB			
Total User Addressable Sectors (LBA Mode)	500,118,192	1,000,215,216	2,000,409,264	

Total useable capacity may be less (duo to formatting, flash management, and other functions). 1GB=1,000,000,000 bytes; 1sector = 512bytes.

3.3 Performance

3.3.1 ATTO Performance

Table 3-2 Read/Write Performance (ATTO)

	256GB	512GB	1TB	Unit
Sequential Read	3200	3300	3300	MB/s
Sequential Write	1200	1900	2000	MB/s

⁻Seq. Read & Write speed test by ATTO

3.3.2 CDM Performance

Table 3-3 Read/Write Performance (CDM)

	256GB	512GB	1TB	Unit
Sequential Q32 Read	3200	3400	3400	MB/s
Sequential Q32 Write	1200	1900	2100	MB/s
4K-QD64 Read	380	370	390	MB/s
4K-QD64 Write	540	530	540	MB/s

⁻Seq. Read & Write speed test by Crystal Disk Mark 6.0.2

⁻The system conditions and test environment may affect test result

3.3.3 IOPS Performance

Table 3-4 Read/Write IOPS Performance

	256GB	512GB	1TB	Unit
4K Random Read	90K	100K	100K	IOPS
4K Random Write	140K	160K	190K	IOPS

⁻Seq. Read & Write speed test by IOmeter 2010 with "00" pattern (Queue depth of 64; Measurements are performed on 10% capacity of LBA range. Write cache enable)

3.3.4 AS-SSD Performance

Table 3-5 Read/Write Performance (AS-SSD)

	256GB	512GB	1TB	Unit
Sequential Read	2700	2800	2700	MB/s
Sequential Write	1100	1700	1800	MB/s
4K-64 Thrd Read	380	390	390	MB/s
4K-64 Thrd Write	890	960	950	MB/s

⁻Seq. Read & Write speed test by AS-SSD with Random pattern

3.4 Electrical Specifications

3.4.1 Operating Voltage

Table 3-6 Operating Voltage

Operating Voltage			
Input Power DC 3.3V ± 5%			
Maximum Allowable Ripple	100mV p-p		

3.4.2 Power Consumption

Table 3-7 Power Consumption (Typical)

Table 6 7 1 Gwel Gerisampuoli (Typidal)					
	256GB	512GB	1TB	Unit	
L0	0.55	0.54	0.55	w	
L1	0.04	0.04	0.04	W	
L1.2	0.0013	0.0013	0.0013	w	
Sequential Read	1.60	1.56	1.61	W	
Sequential Write	2.12	2.43	2.63	W	
Random Read	1.60	1.54	1.59	w	
Random Write	1.73	1.74	1.77	w	

⁻IOPS Queues/Threads: Q64T8

⁻Different system conditions and test environments may affect test results

3.5 Environmental Conditions

Table 3-8 Temperature and Humidity

Feature	Operating	Non-Operating
Standard Temperature	0°C to 70°C	-40°C to 85°C
Humidity	5%~95% RH, non-condensing	

3.6 Reliability

Table 3-9 Shock and Vibration

Parameter	Conditions	Reference Standards
Shock	1500G, 3 axes, duration 0.5ms, Half Sine Wave	JESD22-B110
Vibration	20G , 3 axes , Peak, 20~2000Hz	JESD22-B103

Table 3-10 MTBF

Parameter	Conditions	Hours
MTBF	MIL-HDBK-217	2,000,000

Table 3-11 Uncorrectable Bit Error Rate

Parameter	Value
Uncorrectable Bit Error Rate (UBER)	1 sector in 10 ⁻¹⁵ bits read, Max

Table 3-12 ESD Test

Basic Standard	EN 61000-4-2/ IEC 61000-4-2	
Test Level	Contact +/- 4KV Air +/- 2KV, +/- 4KV, +/- 8KV	
Criteria	Class B	

Table 3-13 EMI Test

Parameter	Conditions	Result
EMI	CISPR22	Class P
	CISPR32	Class B

Table 3-14 Data Retention

Parameter	Value	
Data Retention	30°C / 1 year	

3.7 Endurance

SSD endurance can be predicted based on the operating workload. The table below shows the drive lifetime for each SSD capacity based JESD219 client workload.

Table 3-15 Terabytes Written

Capacity	256GB	512GB	1TB	Unit
TBW	240	480	960	ТВ

3.8 FW Version

Table 3-16 FW Version

	256GB	512GB	1TB
FW Version	VC0S0304	VC0S0304	VC0S0304

3.9 Key Component List

Table 3-17 Key Component List.

	256GB	512GB	1TB	
CTL	Realtek RTS5766DL	Realtek RTS5766DL	Realtek RTS5766DL	
DRAM	No DRAM	No DRAM	No DRAM	
Flash	Micron B47R 512Gb	Micron B47R 512Gb	Micron B47R 512Gb	

3.10 Thermal Specifications

Table 3-18 Thermal Specifications

Condition	SMART Drive Temperature	CTL T-Junction Temperature
Light throttling	80 °C	100 °C
Heavy throttling	90 °C	110 °C
Trickle IO	95 °C	115 °C

3.11 Power Up Specifications

Table 3-19 Power Up Specifications

тине и при при при при при при при при при п		
Parameter	Value	
POR (Power-On-Ready)	1.89 second	
SPOR (Sudden Power-On-Ready)	3.5 second	

⁻ Complete the first I/O command (PERST→ First I/O)

3.12 PCIe Power Management Register

Table 3-20 PCIe Power Management Register

Parameter	Value
	ASPM L1 supported, L1 PM Substates supported,
Power Management Register	ASPM L1.1 supported, ASPM L1.2 supported,
	PCI-PM L1.1 supported, PCI-PM L1.2 supported

4.0 Support Command Sets

4.1 Identify Device Command

ADATA SSD follows NVMe 1.3 Specification and responds to identify command with a pre-defined string of information listed in Identify Controller Data structure.

Table 4-1 Identify Controller Data Structure Table

Bytes	O/M	Default Value	Description	
Controller Capabilities and Features				
01:00	М	0x10ec	PCI Vendor ID (VID)	
03:02	М	0x10ec	PCI Subsystem Vendor ID (SSVID)	
23:04	М	"xxxxxxxxxx"	Serial Number, #:Variables	
63:24	М	"SM2P32A8-XXXGC"	Model Number (MN)	
71:64	М	VC0S0304	Firmware Revision, #:Variables	
72	М	0x00	Recommended Arbitration Burst (RAB)	
75:73	М	0x00e04c	IEEE OUI Identifier (IEEE)	
76	0	0x00	Controller Multi-Path I/O and Namespace	
			Sharing Capabilities (CMIC)	
77	М	0x05	Maximum Data Transfer Size (MDTS)	
79:78	М	0x0001	Controller ID (CNTLID)	
83:80	М	0x00010400	Version (VER)	
87:84	М	0x000f4240	RTD3 Resume Latency (RTD3R)	
91:88	М	0x001e8480	RTD3 Entry Latency (RTD3E)	
95:92	М	0x00000300	Optional Asynchronous Events Supported (OAES)	
99:96	M	0x00000002	Controller Attributes (CTRATT)	
111:100		Reserved		
127:112		0x0000000	FRU Globally Unique Identifier (FGUID)	
239:128		Reserved		
255:240		Refer to the NVMe Management	Interface Specification for definition.	
	Admir	Command Set Attributes & Optional Co	ntroller Capabilities	
257:256	М	0x0017	Optional Admin Command Support (OACS)	
258	М	0x00	Abort Command Limit (ACL)	
259	М	0x03	Asynchronous Event Request Limit (AERL)	
260	М	0x02	Firmware Updates (FRMW)	
261	М	0x03	Log Page Attributes (LPA)	
262	М	0x07	Error Log Page Entries (ELPE)	
263	М	0x04	Number of Power States Support (NPSS)	
264	М	0x01	Admin Vendor Specific Command Configuration (AVSCC)	

265	0	0x01	Autonomous Power State Transition Attributes
			(APSTA)
267:266	М	0x0184	Warning Composite Temperature Threshold
			(WCTEMP)
269:268	М	0x0189	Critical Composite Temperature Threshold
			(CCTEMP)
271:270	0	0x0014	Maximum Time for Firmware Activation
			(MTFA)
275:272	0	0x00004000	Host Memory Buffer Preferred Size (HMPRE)
279:276	0	0x00002000	Host Memory Buffer Minimum Size (HMMIN)
295:280	0	0x00000000	Total NVM Capacity (TNVMCAP)
311:296	0	0x0000000	Unallocated NVM Capacity (UNVMCAP)
315:312	0	0x0000000	Replay Protected Memory Block Support
010.012		0.0000000	(RPMBS)
317:316		Reserved	
318	0	0x01	Device Self-test Options (DSTO)
319	М	0x01	Firmware Update Granularity (FWUG)
321:320	М	0x04b0	Keep Alive Support (KAS)
323:322	0	0x0001	Host Controlled Thermal Management
020.022	Ŭ		Attributes (HCTMA)
325:324	0	0x0111	Minimum Thermal Management Temperature
020.024	J	0,0111	(MNTMT)
327:326	0	0x0189	Maximum Thermal Management Temperature
327.320		0.0109	(MXTMT)
331:328	0	0x0000000	Sanitize Capabilities (SANICAP)
511:322	Reserved		
		NVM Command Set Attributes	5
512	М	0x66	Submission Queue Entry Size (SQES)
513	М	0x44	Completion Queue Entry Size (CQES)
F15.F14	М	0x0004	Maximum Outstanding Commands
515:514	IVI	0x0004	(MAXCMD)
519:516	М	0x0000001	Number of Namespaces (NN)
521:520	М	0x001c	Optional NVM Command Support (ONCS)
523:522	М	0x0000	Fused Operation Support (FUSES)
524	М	0x00	Format NVM Attributes (FNA)
525	М	0x05	Volatile Write Cache (VWC)
527:526	М	0x0000	Atomic Write Unit Normal (AWUN)
529:528	М	0x0000	Atomic Write Unit Power Fail (AWUPF)

530	M	0x01	NVM Vendor Specific Command	
			Configuration (NVSCC)	
531	M	Rese	erved	
533:532	0	0x0000	Atomic Compare & Write Unit (ACWU)	
535:534	M	Rese	erved	
539:536	0	0x0000000	SGL Support (SGLS)	
767:540		Reserved		
1023:768	M	"nqn.2018-05.com.example:	NVM Subsystem NVMe Qualified Name	
1023.700	IVI	nvme:nvm-subststem-OUI00E04C000000"	(SUBNQN)	
1791:1024		Reserved		
2047:1792		Refer to the NVMe over Fabr	rics specification.	
		Power State Descriptors		
		20 03 00 00 00 00 00 00		
0070-0040		00 00 00 00 00 00 00	Davies Olate O Davidates (DODO)	
2079:2048	M	00 00 00 00 00 00 00	Power State 0 Descriptor (PSD0)	
		00 00 00 00 00 00 00		
	0	90 01 00 00 00 00 00 00		
0444 0000		00 00 00 00 01 01 01 01	D 01 1 1 D 1 1 (DDD1)	
2111:2080		00 00 00 00 00 00 00	Power State 1 Descriptor (PSD1)	
		00 00 00 00 00 00 00		
		2C 01 00 00 00 00 00 00		
04.40-0440		00 00 00 00 02 02 02 02	Davis Otata O Davida (DODO)	
2143:2112	0	00 00 00 00 00 00 00	Power State 2 Descriptor (PSD2)	
		00 00 00 00 00 00 00		
		2C 01 00 03 88 13 00 00		
2475,2444		10 27 00 00 03 03 03 03	Dougs State 2 Descriptor (DSD2)	
2175:2144	0	00 00 00 00 00 00 00	Power State 3 Descriptor (PSD3)	
		00 00 00 00 00 00 00		
		32 00 00 03 60 EA 00 00		
2207-2470		C8 AF 00 00 04 04 04 04	Davies Ctate 4 Daggintes (DCD4)	
2207:2176	0	00 00 00 00 00 00 00	Power State 4 Descriptor (PSD4)	
		00 00 00 00 00 00 00		
		00 00 00 00 00 00 00		
2220-2200		00 00 00 00 00 00 00	Dower State & Descriptor (DSDS)	
2239:2208	0	00 00 00 00 00 00 00	Power State 5 Descriptor (PSD5)	
		00 00 00 00 00 00 00		
		00 00 00 00 00 00 00		
2271:2240	0	00 00 00 00 00 00 00	Power State 6 Descriptor (PSD6)	
		00 00 00 00 00 00 00 00		

		00 00 00 00 00 00 00		
		00 00 00 00 00 00 00		
		_	00 00 00 00 00 00 00	D 01 1 7 D 11 (D0D7)
2303:2272	0	00 00 00 00 00 00 00	Power State 7 Descriptor (PSD7)	
		00 00 00 00 00 00 00		
		00 00 00 00 00 00 00		
		00 00 00 00 00 00 00		
2335:2304	0	00 00 00 00 00 00 00	Power State 8 Descriptor (PSD8)	
		00 00 00 00 00 00 00		
		00 00 00 00 00 00 00		
		00 00 00 00 00 00 00		
2367:2336	0	00 00 00 00 00 00 00	Power State 9 Descriptor (PSD9)	
		00 00 00 00 00 00 00		
		00 00 00 00 00 00 00		
		00 00 00 00 00 00 00		
2399:2368	0	00 00 00 00 00 00 00	Power State 10 Descriptor (PSD10)	
		00 00 00 00 00 00 00		
		00 00 00 00 00 00 00		
		00 00 00 00 00 00 00		
2431:2400	0	00 00 00 00 00 00 00	Power State 11 Descriptor (PSD11)	
		00 00 00 00 00 00 00		
		00 00 00 00 00 00 00 00		
		00 00 00 00 00 00 00		
2463:2432	0	00 00 00 00 00 00 00	Power State 12 Descriptor (PSD12)	
		00 00 00 00 00 00 00		
		00 00 00 00 00 00 00 00		
		00 00 00 00 00 00 00		
2495:2464	0	00 00 00 00 00 00 00	Power State 13 Descriptor (PSD13)	
		00 00 00 00 00 00 00		
		00 00 00 00 00 00 00		
		00 00 00 00 00 00 00		
2527:2496	0	00 00 00 00 00 00 00	Power State 14 Descriptor (PSD14)	
		00 00 00 00 00 00 00		
		00 00 00 00 00 00 00		
	_	00 00 00 00 00 00 00		
2559:2528	0	00 00 00 00 00 00 00	Power State 15 Descriptor (PSD15)	
		00 00 00 00 00 00 00		
		00 00 00 00 00 00 00		
2591:2560	0	00 00 00 00 00 00 00	Power State 16 Descriptor (PSD16)	
	<u>l</u>		L	

	I		
		00 00 00 00 00 00 00	
		00 00 00 00 00 00 00	
		00 00 00 00 00 00 00	
2623:2592	0	00 00 00 00 00 00 00	Power State 17 Descriptor (PSD17)
2020.2002		00 00 00 00 00 00 00	r ewer state 17 Besonptor (1 SB17)
		00 00 00 00 00 00 00	
		00 00 00 00 00 00 00	
2655:2624	0	00 00 00 00 00 00 00	Power State 18 Descriptor (PSD18)
2000.2024		00 00 00 00 00 00 00	1 ower state to bescriptor (1 3510)
		00 00 00 00 00 00 00	
		00 00 00 00 00 00 00	
2687:2656	0	00 00 00 00 00 00 00	Power State 10 Descriptor (PSD10)
2007.2000		00 00 00 00 00 00 00	Power State 19 Descriptor (PSD19)
		00 00 00 00 00 00 00	
		00 00 00 00 00 00 00	
2719:2688	0	00 00 00 00 00 00 00	Power State 20 Peceriptor (PSP20)
2/19.2000		00 00 00 00 00 00 00	Power State 20 Descriptor (PSD20)
		00 00 00 00 00 00 00	
		00 00 00 00 00 00 00	
0754-0700		00 00 00 00 00 00 00	Davier Chate 24 Decementar (DCD24)
2751:2720	0	00 00 00 00 00 00 00	Power State 21 Descriptor (PSD21)
		00 00 00 00 00 00 00	
		00 00 00 00 00 00 00	
0700.0750		00 00 00 00 00 00 00	Davier Chate 22 Decementar (DCD22)
2783:2752	0	00 00 00 00 00 00 00	Power State 22 Descriptor (PSD22)
		00 00 00 00 00 00 00	
		00 00 00 00 00 00 00	
2045,2704		00 00 00 00 00 00 00	Power State 22 Pagarinter (PSP22)
2815:2784	0	00 00 00 00 00 00 00	Power State 23 Descriptor (PSD23)
		00 00 00 00 00 00 00	
		00 00 00 00 00 00 00	
00.47.0040		00 00 00 00 00 00 00	D 01 + 04 D 1 + (D0D04)
2847:2816	0	00 00 00 00 00 00 00	Power State 24 Descriptor (PSD24)
		00 00 00 00 00 00 00	
		00 00 00 00 00 00 00	
0070 0040		00 00 00 00 00 00 00	Partico Of Day (DODOS)
2879:2848	0	00 00 00 00 00 00 00	Power State 25 Descriptor (PSD25)
		00 00 00 00 00 00 00	
2911:2880	0	00 00 00 00 00 00 00	Power State 26 Descriptor (PSD26)
L	i	<u>i</u>	<u>i</u>

		00 00 00 00 00 00 00	
		00 00 00 00 00 00 00	
		00 00 00 00 00 00 00	
		00 00 00 00 00 00 00	
20.42,2042		00 00 00 00 00 00 00	Davier Chata 27 Danavirtas (DCD27)
2943:2912	0	00 00 00 00 00 00 00	Power State 27 Descriptor (PSD27)
		00 00 00 00 00 00 00	
		00 00 00 00 00 00 00	
2075-2044		00 00 00 00 00 00 00	Device Chate 20 Decements (DCD20)
2975:2944	0	00 00 00 00 00 00 00	Power State 28 Descriptor (PSD28)
		00 00 00 00 00 00 00	
		00 00 00 00 00 00 00	
0007.0070		00 00 00 00 00 00 00	D 01 4 00 D 14 (D0D00)
3007:2976	0	00 00 00 00 00 00 00	Power State 29 Descriptor (PSD29)
		00 00 00 00 00 00 00	
		00 00 00 00 00 00 00	
0000-0000		00 00 00 00 00 00 00	Bernar Olate 00 Bernariates (BODO)
3039:3008	0	00 00 00 00 00 00 00	Power State 30 Descriptor (PSD30)
		00 00 00 00 00 00 00	
		00 00 00 00 00 00 00	
0074-0040		00 00 00 00 00 00 00	Develop Olate Of Descriptor (DODO)
3071:3040	0	00 00 00 00 00 00 00	Power State 31 Descriptor (PSD31)
		00 00 00 00 00 00 00	
	•	Vendor Specific	
		52 45 41 4C 54 45 4B 5F	
		52 4C 36 35 37 37 20 E0	
4095:3072	0	4C 11 6D D6 18 8C 5F 70	Vendor Specific (VS)
		5F 74 42 34 37 52 56 05	
		2E 0C 00 00 00 00 00 00	
-	•		

4.2 SMART/Health Information

Table 4-2 SMART/Health Information log

Byte	Tabl	le 4-2 SMART/Health Information log Description			
0	Critical Warn	ning: This field indicates critical warnings for the state of the controller. Each bit			
	corresponds to a critical warning type; multiple bits may be set. If a bit is cleared to '0', then				
		that critical warning does not apply. Critical warnings may result in an asynchronous event			
		the host. Bits in this field represent the current associated state and are not			
	persistent.	·			
	·				
	Bit	Definition			
	00	If set to '1', then the available spare space has fallen below the threshold.			
	01	If set to '1', then a temperature is above an over temperature threshold or			
		below an under temperature threshold (refer to section 5.15.1.4).			
	02	If set to '1', then the NVM subsystem reliability has been degraded due to			
		significant media related errors or any internal error that degrades NVM			
		subsystem reliability.			
	03	If set to '1', then the media has been placed in read only mode.			
	04	If set to '1', then the volatile memory backup device has failed. This field is			
		only valid if the controller has a volatile memory backup solution.			
	07:05	Reserved			
2:1	Composite Temperature: Contains a value corresponding to a temperature in degrees				
	Kelvin that rep	presents the current composite temperature of the controller and namespace(s)			
	associated wi	th that controller. The manner in which this value is computed is implementation			
	specific and n	nay not represent the actual temperature of any physical point in the NVM			
	subsystem. T	he value of this field may be used to trigger an asynchronous event (refer to			
	section 5.15.1	1.4).			
	Warning and	critical overheating composite temperature threshold values are reported by			
	the WCTEMP	and CCTEMP fields in the Identify Controller data structure in Figure 90.			
3	Available Sp	are: Contains a normalized percentage (0 to 100%) of the remaining spare			
	capacity avail	able.			
4	Available Sp	are Threshold: When the Available Spare falls below the threshold indicated			
	in this field, a	n asynchronous event completion may occur. The value is indicated as a			
	normalized pe	ercentage (0 to 100%).			

5	Percentage Used: Contains a vendor specific estimate of the percentage of NVM
	subsystem life used based on the actual usage and the manufacturer's prediction of NVM
	life. A value of 100 indicates that the estimated endurance of the NVM in the NVM subsystem
	has been consumed, but may not indicate an NVM subsystem failure. The value is allowed
	to exceed
	100. Percentages greater than 254 shall be represented as 255. This value shall be updated
	once per power-on hour (when the controller is not in a sleep state).
	Refer to the JEDEC JESD218A standard for SSD device life and endurance measurement
	techniques.
31:6	Reserved
47:32	Data Units Read: Contains the number of 512 byte data units the host has read from the
	controller; this value does not include metadata. This value is reported in thousands (i.e., a
	value of 1 corresponds to 1000 units of 512 bytes read) and is rounded up. When the LBA
	size is a value other than 512 bytes, the controller shall convert the amount of data read to
	512 byte units.
	For the NVM command set, logical blocks read as part of Compare and Read operations shall
	be included in this value.
63:48	Data Units Written: Contains the number of 512 byte data units the host has written to the
	controller; this value does not include metadata. This value is reported in thousands (i.e., a
	value of 1 corresponds to 1000 units of 512 bytes written) and is rounded up. When the LBA
	size is a value other than 512 bytes, the controller shall convert the amount of data written to
	512 byte units.
	For the NVM command set, logical blocks written as part of Write operations shall be included
	in this value. Write Uncorrectable commands shall not impact this value.
79:64	Host Read Commands: Contains the number of read commands completed by the
	controller.
	For the NVM command set, this is the number of Compare and Read commands.
95:80	Host Write Commands: Contains the number of write commands completed by the
	controller.
	For the NVM command set, this is the number of Write commands.
111:96	Controller Busy Time: Contains the amount of time the controller is busy with I/O
	commands. The controller is busy when there is a command outstanding to an I/O Queue
	(specifically, a command was issued via an I/O Submission Queue Tail doorbell write and
	the corresponding completion queue entry has not been posted yet to the associated I/O
	Completion Queue). This value is reported in minutes.
127:112	Power Cycles: Contains the number of power cycles.
143:128	Power On Hours: Contains the number of power-on hours. This may not include time that
	the controller was powered and in a non-operational power state.

159:144	Unsafe Shutdowns: Contains the number of unsafe shutdowns. This count is incremented
	when a shutdown notification (CC.SHN) is not received prior to loss of power.
175:160	Media and Data Integrity Errors: Contains the number of occurrences where the controller
	detected an unrecovered data integrity error. Errors such as uncorrectable ECC, CRC
	checksum failure, or LBA tag mismatch are included in this field.
191:176	Number of Error Information Log Entries: Contains the number of Error Information log
	entries over the life of the controller.
195:192	Warning Composite Temperature Time: Contains the amount of time in minutes that the
	controller is operational and the Composite Temperature is greater than or equal to the
	Warning Composite Temperature Threshold (WCTEMP) field and less than the Critical
	Composite Temperature Threshold (CCTEMP) field in the Identify Controller data structure
	in Figure 90.
	If the value of the WCTEMP or CCTEMP field is 0h, then this field is always cleared to 0h
	regardless of the Composite Temperature value.
199:196	Critical Composite Temperature Time: Contains the amount of time in minutes that the
	controller is operational and the Composite Temperature is greater than the Critical
	Composite Temperature Threshold (CCTEMP) field in the Identify Controller data structure
	in Figure 90.
	If the value of the CCTEMP field is 0h, then this field is always cleared to 0h regardless of
	the Composite Temperature value.
201:200	Temperature Sensor 1: Contains the current temperature reported by temperature sensor
	1. This field is defined by Figure 81.
203:202	Temperature Sensor 2: Contains the current temperature reported by temperature sensor
	2. This field is defined by Figure 81.
205:204	Temperature Sensor 3: Contains the current temperature reported by temperature sensor
	3. This field is defined by Figure 81.
207:206	Temperature Sensor 4: Contains the current temperature reported by temperature sensor
	4. This field is defined by Figure 81.
209:208	Temperature Sensor 5: Contains the current temperature reported by temperature sensor
	5. This field is defined by Figure 81.
211:210	Temperature Sensor 6: Contains the current temperature reported by temperature sensor
	6. This field is defined by Figure 81.
213:212	Temperature Sensor 7: Contains the current temperature reported by temperature sensor
	7. This field is defined by Figure 81.
215:214	Temperature Sensor 8: Contains the current temperature reported by temperature sensor
	8. This field is defined by Figure 81.
219:216	Thermal Management Temperature 1 Transition Count: Contains the number of times the
	controller transitioned to lower power active power states or performed vendor specific thermal
	management actions while minimizing the impact on performance in order to attempt to reduce the
L	I

	Composite Temperature because of the host controlled thermal management feature (i.e., the
	Composite Temperature rose above the Thermal Management Temperature 1.) This counter shall
	not wrap once it reaches its maximum value. A value of zero, indicates that this transition has never
	occurred or this field is not implemented.
223:220	Thermal Management Temperature 2 Transition Count: Contains the number of times the
	controller transitioned to lower power active power states or performed vendor specific thermal
	management actions regardless of the impact on performance (e.g., heavy throttling) in order to
	attempt to reduce the Composite Temperature because of the host controlled thermal management
	feature (i.e., the Composite Temperature rose above the Thermal Management Temperature 2.)
	This counter shall not wrap once it reaches its maximum value. A value of zero, indicates
227:224	Total Time For Thermal Management Temperature 1: Contains the number of seconds that the
	controller had transitioned to lower power active power states or performed vendor specific thermal
	management actions while minimizing the impact on performance in order to attempt to reduce the
	Composite Temperature because of the host controlled thermal management feature. This counter
	shall not wrap once it reaches its maximum value. A value of zero, indicates that this transition has
	never occurred or this field is not implemented.
231:228	Total Time For Thermal Management Temperature 2: Contains the number of seconds that the
	controller had transitioned to lower power active power states or performed vendor specific thermal
	management actions regardless of the impact on performance (e.g., heavy throttling) in order to
	attempt to reduce the Composite Temperature because of the host controlled thermal management
	feature. This counter shall not wrap once it reaches its maximum value. A value of zero, indicates
	that this transition has never occurred or this field is not implemented.
511:232	Reserved

4.3 NVMe Command Set

Table 4-3 Admin Command Set

Opcode by Field						
(07)	(06:02)	(01:00)	Combined	O/M ¹	Command ³	
Standard Command	Function	Data Transfer ⁴	Opcode ²	0,111		
0b	000 00b	00b	00h	М	Delete I/O Submission Queue	
0b	000 00b	01b	01h	М	Create I/O Submission Queue	
0b	000 00b	10b	02h	М	Get Log Page	
0b	000 01b	00b	04h	М	Delete I/O Completion Queue	
0b	000 01b	01b	05h	М	Create I/O Completion Queue	
0b	000 01b	10b	06h	М	Identify	
0b	000 10b	00b	08h	М	Abort	
0b	000 10b	01b	09h	М	Set Features	
0b	000 10b	10b	0Ah	М	Get Features	
0b	000 11b	00b	0Ch	М	Asynchronous Event Request	
0b	001 00b	00b	10h	0	Firmware Commit	
0b	001 00b	01b	11h	0	Firmware Image Download	
0b	001 01b	00b	14h	0	Device Self-test	
0b	001 10b	00b	18h	NOTE 5	Keep Alive	
1b	000 00b	00b	80h	0	Format NVM	
1b	000 00b	01b	81h	0	Security Send	
1b	000 00b	10b	82h	0	Security Receive	

NOTES:

- 1. O/M definition: O = Optional, M = Mandatory.
- Opcodes not listed are reserved.
- A subset of commands uses the Namespace Identifier field (CDW1.NSID). When not used, the field shall be cleared to 0h.
- 4. Indicates the data transfer direction of the command. All options to the command shall transfer data as specified or transfer no data. All commands, including vendor specific commands, shall follow this convention: 00b = no data transfer; 01b = host to controller; 10b = controller to host; 11b = bidirectional.
- For NVMe over PCIe implementations, the Keep Alive command is optional. For NVMe over Fabrics
 implementations, the associated NVMe Transport binding defines whether the Keep Alive command is optional or
 mandatory.

⁻Follow NVMe v1.3 Specification

Table 4-4 NVMe Command Set

Opcode by Field					
(07)	(06:02) (01:00)		Combined	O/M ¹	Command ³
Standard Command	Function	Data Transfer⁵	Opcode ²		
0b	000 00b	00b	00h	М	Flush
0b	000 00b	01b	01h	М	Write
0b	000 00b	10b	02h	М	Read
0b	000 10b	00b	08h	0	Write Zeroes
0b	000 10b	01b	09h	0	Dataset Management

NOTES:

- 6. O/M definition: O = Optional, M = Mandatory.
- 7. Opcodes not listed are reserved.
- 8. All NVM commands use the Namespace Identifier field (CDW1.NSID).
- 9. Mandatory if reservations are supported as indicated in the Identify Controller data structure.
- 10. Indicates the data transfer direction of the command. All options to the command shall transfer data as specified or transfer no data. All commands, including vendor specific commands, shall follow this convention: 00b = no data transfer; 01b = host to controller; 10b = controller to host; 11b = bidirectional.

Table 4-5 Log Page Support

		0 0 11
Feature Identifier	O/M	Description
00h		Reserved
01h	М	Error Information
02h	М	SMART / Health Information
03h	М	Firmware Slot Information
05h	0	Commands Supported and Effects
06h	0	Device Self-test

⁻Follow NVMe v1.3 Specification

⁻Follow NVMe v1.3 Specification

Table 4-6 Set Features – Feature Identifiers

Feature Identifier	O/M ⁶	Persistent Across Power Cycle and Reset ²	Uses Memory Buffer for Attributes	Description	
00h				Reserved	
01h	М	No	No	Arbitration	
02h	М	No	No	Power Management	
04h	М	No	No	Temperature Threshold	
05h	М	No	No	Error Recovery	
06h	0	No	No	Volatile Write Cache	
07h	М	No	No	Number of Queues	
08h	NOTE 5	No	No	Interrupt Coalescing	
09h	NOTE 5	No	No	Interrupt Vector Configuration	
0Ah	М	No	No	Write Atomicity Normal	
0Bh	М	No	No	Asynchronous Event Configuration	
0Ch	0	No	Yes	Autonomous Power State Transition	
0Dh	0	No ³	No ⁴	Host Memory Buffer	
0Fh	0	No	No	Keep Alive Timer	
10h	0	Yes	No	Host Controlled Thermal Management	
11h	0	No	No	Non-Operational Power State Config	

NOTES:

- The behavior of a controller in response to an inactive namespace ID to a vendor specific Feature Identifier is vendor specific.
- 2. This column is only valid if the feature is not saveable (refer to section 7.8). If the feature is saveable, then this column is not used and any feature may be configured to be saved across power cycles and reset.
- 3. The controller does not save settings for the Host Memory Buffer feature across power states and reset events, however, host software may restore the previous values. Refer to section 8.9.
- 4. The feature does not use a memory buffer for Set Features, but it does use a memory buffer for Get Features. Refer to section 8.9.
- 5. The feature is mandatory for NVMe over PCIe. This feature is not supported for NVMe over Fabrics.
- 6. O/M: O = Optional, M = Mandatory.

⁻Follow NVMe v1.3 Specification

5.0 Pin Assignment and Descriptions

Table 5-1 Pin assignment and descriptions

Top Side		Bottom Side			
NO.	Pin	Descriptions	Descriptions	Pin	NO.
75	GND	System Ground			
73	GND	System Ground	+3.3V	POWER	74
71	GND	System Ground	+3.3V	POWER	72
69	NC	PDEDC	+3.3V	POWER	70
67	NC	NC	SUSCLK	NC	68
	•	M-	-KEY		
57	GND	System Ground	NC	NC	58
55	Diff	RefCLKP	NC	NC	56
53	Diff	RefCLKN	PEWAKE#	NC	54
51	GND	System Ground	CLKREQ#	CLKREQ	52
49	Diff	PORXP	PERST#	PERST	50
47	Diff	PORXN	NC	NC	48
45	GND	System Ground	NC	NC	46
43	Diff	P0TXP	NC	NC	44
41	Diff	P0TXN	NC	NC	42
39	GND	System Ground	NC	NC	40
37	Diff	P1RXP	NC	NC	38
35	Diff	P1RXN	NC	NC	36
33	GND	System Ground	NC	NC	34
31	Diff	P1TXP	NC	NC	32
29	Diff	P1TXN	NC	NC	30
27	GND	System Ground	NC	NC	28
25	Diff	P2RXP	NC	NC	26
23	Diff	P2RXN	NC	NC	24
21	GND	System Ground	NC	NC	22
19	Diff	P2TXP	NC	NC	20
17	Diff	P2TXN	+3.3V	POWER	18
15	GND	System Ground	+3.3V	POWER	16
13	Diff	P3RXP	+3.3V	POWER	14
11	Diff	P3RXN	+3.3V	POWER	12
9	GND	System Ground	LED1#(OPTION)	LED1#	10
7	Diff	P3TXP	NC	NC	8
5	Diff	P3TXN	NC	NC	6
3	GND	System Ground	+3.3V	POWER	4
1	GND	System Ground	+3.3V	POWER	2

6.0 Product Line up

Table 6-1 Product Line up

Model Name	Capacity	Туре	Remark
SM2P32A8-256GC	256GB	M.2 PCIe	
SM2P32A8-512GC	512GB	M.2 PCIe	0°C~70°C
SM2P32A8-001TC	1TB	M.2 PCIe	

Figure 6-1 Model Name Coding Rule

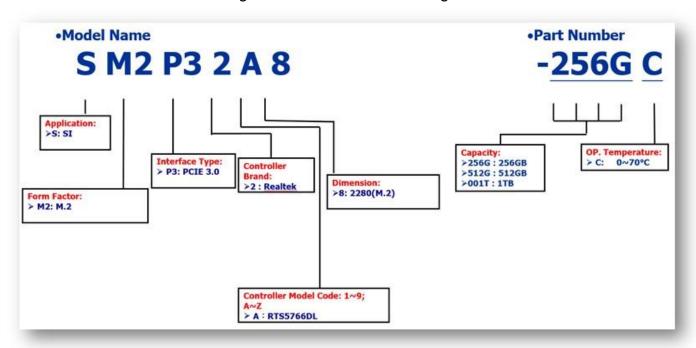
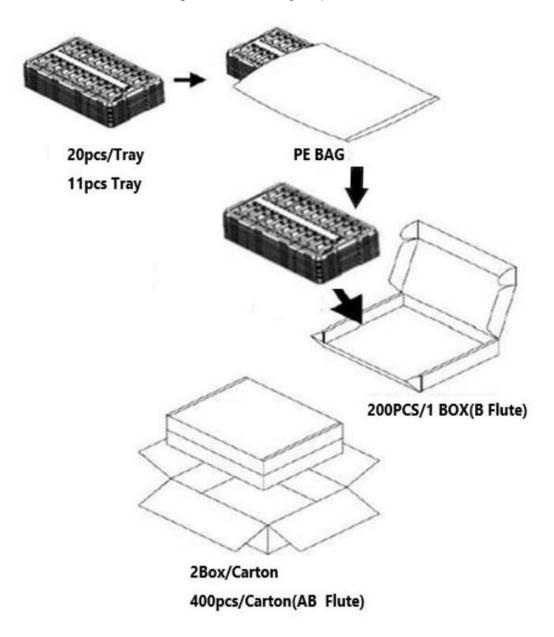


Figure 6-2 Label Pictures



7.0 Package Specification

Figure 7-1 Package Specification

23